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We study the hierarchical structuring of islands of stable periodic oscillations inside chaotic regions in phase
diagrams of single-mode semiconductor lasers with optical injection. Phase diagrams display remarkable
accumulation horizons: boundaries formed by the accumulation of infinite cascades of self-similar islands of
periodic solutions of ever-increasing period. Each cascade follows a specific period-adding route. The riddling
of chaotic laser phases by such networks of periodic solutions may compromise applications operating with
chaotic signals such as, e.g., secure communications.
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Semiconductor lasers are key components for progress in
many areas �1,2�, e.g., in the investigations of signatures of
wideband chaos synchronization �1,3�, for secure communi-
cation �2,4�, and for ultrahigh-density optical memories �5�.
Such compact lasers represent 99.8% of the world market for
lasers in terms of units sold per year �6�, a market of 600
million units sold in 2003–2004. An important quality of
semiconductor lasers is their rich nonlinear response when
subjected either to optical injection, to optical feedback, or to
modulations. Lasers with optical injection have attracted
much attention in recent years, experimentally as well as
from theoretical and numerical points of view. The complex
phenomenology and intricate structure of bifurcations as a
function of the injected intensity and frequency detuning
were summarized in a recent survey �7�.

The present literature indicates a good overall agreement
between theory and experiments �8�. For instance, calcula-
tions and numerical simulations predict intricate laser behav-
iors, including stable periodic oscillations inside regions
characterized by chaotic laser signals �9,10�. More recently,
Fordell and Lindberg �11� and Chlouverakis and Adams �12�
reported diagrams obtained by numerical integration of the
rate equations for an optically injected semiconductor laser
showing some islands of periodic laser signals embedded in
a sea of chaos. These important findings raise an interesting
question concerning the precise structuring of laser chaotic

phases. In fact, this question is the tip of a much wider prob-
lem that we consider here.

Phase diagrams for discrete-time models described by
mappings are common nowadays �13,14�. But the much
more difficult problem of building detailed phase diagrams
for models ruled by sets of nonlinear differential equations
has been much less investigated. Of course, diagrams record-
ing complex bifurcations and providing valuable insight for a
few of the lowest periods have been obtained in a number of
in-depth bifurcation studies using powerful continuation
methods �7,15–17�. However, complete diagrams, discrimi-
nating simultaneously regions of arbitrarily high periods and
regions with chaotic phases, remain essentially unexplored
for continuous-time autonomous models. This is the problem
we attack here.

Our numerical simulations revealed surprising regularities
existing inside the chaotic phases of the laser. As illustrated
in Figs. 1 and 2, the parameter space has wide regions char-
acterized by chaotic solutions. These chaotic phases contain
both single accumulations as well as accumulations of accu-
mulations. More specifically, chaotic laser phases are riddled
with infinite sequences of period-adding cascades, each one
converging toward curves that look simple �structureless�,
denoted “accumulation horizons,” for simplicity. One ex-
ample is indicated by the arrow marked A in Fig. 2�a�. From
a theoretical point of view, we note that here the differential
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FIG. 1. �Color online� Phase diagrams quantifying both regularity �darker shadings� and chaos �colors; lighter shadings�. �a� Global view.
�b� Magnification of box in �a�, for positive detuning: Numbers denote quantity of peaks in a period of the laser intensity. Boxes A, B, C, and
D are shown magnified in the next figures. �c� Magnification of the period-9 island inside box A in �b� showing a structure also found in CO2

lasers �Ref. �22��. Red denotes “stronger” chaos �more positive Lyapunov exponents�.
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equations ruling the laser are autonomous equations, i.e.,
they do not involve time explicitly. Thus, the remarkable
organization of the parameter space reported here must origi-
nate from an intrinsic interplay between variables and param-
eters of the laser. We found accumulation horizons to exist
abundantly also in electronic circuits, atmospheric and
chemical oscillators, and several other systems �18�. To fix
ideas, here we focus just on the laser case. Incidentally, we
mention that accumulation cascades in optically injected la-
sers have been investigated by Krauskopf and Wieczorek
�17� quite recently. However, their accumulations are of a
very different nature than ours �19�.

The laser we consider is a single-mode semiconductor
laser subjected to monochromatic optical injection, governed
by the standard rate equations for the complex laser field E
=Ex+ iEy and a population inversion n rescaled such that �8�

Ė = K + �1

2
�1 + i��n − i��E , �1a�

ṅ = − 2�n − �1 + 2Bn���E�2 − 1� . �1b�

Here, the interesting control parameters are K, the intensity
of the injected field, and �, the detuning frequency. As usual
�8�, we fix B=0.0295, �=0.0973, and �=2.6.

Figure 1 illustrates typical high-resolution phase diagrams
obtained by computing the spectra of Lyapunov exponents
on a 900�900 grid of equally spaced parameters for Eqs.
�1a� and �1b�, integrated with a standard fourth-order Runge-
Kutta scheme with a fixed step size h=0.01. Each grid point
color-codifies the magnitude of the largest nonzero exponent:
negative exponents �indicating periodic solutions� were col-
ored with gray shadings �black indicates zero, white the most
negative values�, while positive exponents �marking chaotic
laser signals� are indicated in a continuously changing
yellow-red scale �lighter shadings in black and white�. The
color scale of individual phase diagrams was renormalized to
span each diagram. Figure 1�a� displays the same parameter

region investigated recently by Wieczorek et al. �8�. To con-
vert � into GHz, multiply it by 4.6948. Our figure corrobo-
rates the low-period bifurcation boundaries reported recently
�8� and, more importantly, shows additional details and regu-
larities, such as, e.g., the inner structuring of periodicity do-
mains, the regions where recurring self-similar organizations
occur and where they fail to exist. Our figures reveal details
that are very hard �if not impossible� to obtain using continu-
ation methods.

Islands of regular laser oscillations in semiconductor la-
sers were measured by Eriksson and Lindberg in recent ex-
periments �20,21�. First, they were able to identify a period-3
island by tuning the injection intensity for three fixed values
of the frequency detuning �20�. Then, by repeating measure-
ments for finer detuning intervals, they cleverly managed to
characterize a few islands of low period �21�. Figure 1�b�
corroborates such low-periodic islands and shows a myriad
of additional islands of ever-increasing periods as discussed
below. It also displays several other features, in particular the
existence of self-similarities of various kinds. Figure 1�c�
displays an island with the familiar shrimp shape �13� re-
corded when varying two parameters simultaneously
�codimension-2 phenomenon�. Although well known in
discrete-time dynamical systems, this peculiar shape was ob-
served only recently in a nonautonomous continuous-time
system, namely, in CO2 lasers �22�.

A series of unexpected and striking accumulation net-
works may be easily recognized from Fig. 2, presenting suc-
cessively magnified views of box B in Fig. 1�b�. Embedded
in the chaotic region, there are regular and abundant net-
works of stable islands of periodic laser signals with un-
bounded periodicities. As Fig. 2�a� shows, the parameter net-
works existing in the chaotic region bridge periodic laser
signals of increasingly higher periodicities, which converge
systematically toward well-defined and characteristic accu-
mulation boundaries or horizons. As indicated schematically
by the numbers in Fig. 2�a�, when moving along the dark
central bodies of the islands one observes series of period-
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FIG. 2. �Color online� Accumulations of islands of periodic solutions �darker shadings� embedded inside a chaotic phase �yellow-red
lighter shadings�. �a� Series of islands converging toward a line segment, marked A, forming an accumulation horizon. “Legs of periodicity”
accumulate parallel to line B. Curves A and B meet at vertex V. Bifurcation diagrams along dotted lines, shown in Fig. 3, display
period-adding cascades converging to horizon A, the boundary of a four-peak domain, as indicated. �b� Genesis and separation of distinct
10→14→18→¯ period-adding cascades. �c� Similar genesis and separation as in �b� but for distinct �12�→16→20→24→¯ cascades.
Numbers refer to the quantity of peaks in the laser intensity.
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adding cascades of bifurcations, a characteristic signature of
the experimentally elusive and rather challenging homoclinic
route to chaos �23–30�. Note that the periodicity in these
cascades increases by 4, the same periodicity characterizing
the region of periodicity that exists to the left of the accumu-
lation boundary.

That periodicity organizes along specific directions in pa-
rameter space is a well-known fact for discrete-time dynami-
cal systems �13�. But that this is also true for continuous-
time dynamical system is made obvious now by Fig. 2. A
feature not yet reported for discrete-time systems is the origi-
nal way in which individual period-adding bifurcation cas-
cades are created �18�. As shown by Fig. 2�b�, the single
period-10 structure �containing the pair of quasiosculating
white spines� splits into two essentially separated shrimplike
structures �13� as the period increases. This mechanism leads
to separate cascades that quickly give the impression of be-
ing totally uncorrelated because of the very strong compres-
sion experienced by the islands as the period increases more
and more without bound. Here, white spines mark loci of the
most negative Lyapunov exponents, being loosely equivalent
to the superstable loci familiar from discrete-time dynamical
systems. The splitting process involves several specific met-
ric properties, for instance, the parameter separation of the
islands accumulates to specific values while their volume
decreases regularly with characteristic exponents.

The bifurcation diagrams in Fig. 3, obtained when moving
along the upper dotted path in Fig. 2�a�, show period-adding
cascades with the characteristic alternation of chaos and pe-
riodicity �23–30�. Numbers labeling periodic windows refer
to the number of peaks present in one period of the respec-
tive variable. Note the striking fact that different variables
display different number of peaks. Since the number of peaks
is usually taken to label the “period” of oscillation, one sees
that such labels are not unique but depend on the variable
used to count the peaks. Note that, independently of the vari-
able selected, the number of periods increases by an amount
equal to the number of peaks characterizing the leftmost win-
dow, toward which the period-adding cascades accumulate.

As a last noteworthy result found in semiconductor lasers,
Fig. 4 illustrates islands of regular signals having the same
exquisite shapes found very recently in a rather different sce-
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FIG. 3. �Color online� Bifurcation diagrams showing that the
number of peaks of the signals depends on the physical quantity
being considered. The number of peaks of laser intensity I�Ex
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FIG. 4. �Color online� Magnification of boxes C and D in Fig. 1�b�, showing typical islands or stable periodic orbits with the same shapes
found recently in a completely different scenario: systems without critical points �see text�. Color coding as in Figs. 1 and 2.
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nario: in a discrete-time dynamical system with no critical
points, i.e., in a system not obeying the Cauchy-Riemann
conditions �31,32�. Such striking shapes exist abundantly in
the lower portion of Fig. 1�b�. Thus, semiconductor lasers
open the way to investigate experimentally novel and sophis-
ticated mathematical behaviors arising from holomorphic dy-
namics not ruled by critical points, so far believed to be the
key players in the dynamics of complex functions �31�.

In summary, chaotic phases of optically injected semicon-
ductor lasers contain peculiar accumulation boundaries and
networks formed by stable periodic solutions. Since ex-
tended domains of “clean” chaos are critical for a number of
laser applications �1,2�, these regularities need to be duly
taken into account in applications that depend on the exis-
tence of wide regions of smooth and continuous chaos, such
as secure communication with chaos. Although we concen-
trated on the case �=2.6, representative of the relatively low
values more frequently addressed in the literature, larger is-
lands exist for higher values of �, say �	6, making them
easier to observe experimentally. Accumulation horizons ex-

ist also in other laser systems, e.g., in CO2 lasers with feed-
back, and in other sets of differential equations �18�.

The accumulation networks reported here pose an inter-
esting question: In sharp contrast with discrete dynamical
system, where periodicity varies discretely �“quantized”�, an
appealing new possibility afforded by lasers is to study how
periodicities defined by continuous real numbers evolve and
organize in phase diagrams when several parameters are
tuned simultaneously. Such investigations should not be too
difficult to perform numerically. As a last remark, we briefly
mention that the alternating period-chaotic sequences famil-
iar from period-adding cascades �23–30� are in fact an illu-
sory artifact of considering too restricted slices cutting very
regular structures in parameter space �18�. The proper un-
folding of this phenomenon requires tuning at least two pa-
rameters, i.e., is a phenomenon visible only in codimension 2
or higher.
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